Part 1.
Knowledge and Expert Systems

Knowledge

Concepts

Example

It is cold — put

Knowledge on a warm coat.

It is cold
outside.

The temperature
outside is 5°C

Facts and
figures

Traditional conception of decision making

Alternative N)
Alternative N-1 }

Implications

Pressures

v
4

v Goals nd

v ~ .
Purposes /' \

Alternative 5 S Constraints
Alternative 4
Alternative 3
Alternative 2
Alternative 1 J

Knowledge-based conception of decision

making
Knowledge
about
implications

ﬂludw I." "f\,\\ Pressures
1 - oals

~
A\ :urr.\und

,/ L 017.
Furposes h‘-—“’

__ Constraints

||___,—

Knowledge

SOLUTCEeS

Alternative N .

Alternative V-1

Alt; rtlz_ﬂive 5 1

Alternative 4
r ™
Alternat:ve 3
[1
Alternative 2
(I .

Alternative 1 J

Ids hhfm{m\/

e

b

- Knowledge that
Knowledge that characterizes he) IE._ B
Knowledge alternatives characterizes
sources commitment

Knowledge as a progression of states

Knowladge of ircreasing Evaluate,

usability and relevance

-

Deeision

> Choice

for a decision sefting
(sense making)

Judgment

Weig h(?3

Synthesize

Insight

> Design

Analyze

Souctured Information

Information W

Selec
(, Inelligence
Gathe Uity
A progression of knowledge states A sample progression
Datum 240
Information 240 is the level of cholesterol

Structured information

240 1s the current level of cholesterol for John Doe

An evaluation

John Doe’s level of cholesterol is now too high

A judgment

John Doe’s health is presently in jeopardy

A decision

John Doeg gets a prescription for Lipitor

Knowledge Acquisition

Agree sequence of topics

Mativate
the expert

4 /
\

m Discuss agreed topics IS
w —

Knowledge
engineer

Setting out
goals

Partl

Expert

Review the interview

Can you give me an overview of the subject?
Can you describe the last case you dealt with?
What facts or hypotheses do you try to establish
when thinking about a problem?

What kinds of things do you like to know about
when you begin to think about a problem?
Leading on to find a little more detail; tell me
more about how this is achieved?

What do you do next?

How does that relateto ... ?

How, why, when, do you do that?

Can you describe what you mean by that?

The role of the Knowledge Engineer

Expert system
development team

-
ﬂ >L Project manager JS ﬂ

[Dﬂmain expert};‘:';{ Knowledge engineer]C:'.)[Programmer J
A &

Expert system ==

End-user J

I
|
\

Complete structure of a rule-based expert
system

External 1
database External program

Expert system |

Knowledge base Database

! 1
u Rule: IF-THEN Fact
d . _
L» Inference engine <—]

A

7

Explanation facilities

[

Developer
Interface

User interface

Knowledge engineer

The inference engine cycles via a match-fire

Knowledge base

%F{ule: IFAis x THEN Bis y

procedure
Database
——p Fact: Als x —H(i Fact: Bls y Ky
Match

Fire

Rule 1:

Rule 2:

Rule 3:

[F Y is true
AND Dis true
THEN Z is true

[F X is true
AND Bis true
AND Eistrue
THEN Y is true

IF A is true
THEN X is true

Part 2:
Conceptual Modeling
of Information Systems

Logical View Process View

Use Case View

Phiysical View Development View

Use Cases

1 Use cases are logical models
e They describe the activities of a system
e Do not address implementation details

[Steps to create a use case:
e Gather requirements
e Prepare Use Case Diagram(s)
e Prepare Use Case Description for each Use Case

How Are Use-Cases Created?

 Each Use Case describes one and only one
function

e But may have several paths that the user can
take to accomplish that single function

 Developed working with users for content
— Use Interviews, JAD, and observation

Use Case Diagram Syntax

Actor

— person or system that derives benefit %
from and is external to the subject

Use Case

— Represents a major piece of system O
functionality

Association Relationship

Include Relationship IIIETS

Extend Relationship ——————>
Generalization Relationship >

Use-Case Diagram for Appointment
System

Appointment System

—

Patient

Q
& * *
Management
()
\
X
/
/\ - "

Doctor

Use-Case Diagram with Specialized Actor

Appointment System

1 -~ \\
. "_)._I'/ { ﬁ\'

* % /\\.
Patient
A
/ \ * * O
Management sl e
¢

New Patient
\“x,
ES S

/ \
Doctor

What are Use-Case Descriptions?

e Describe basic functions of the system using words

— What the user can do
— How the system responds

e Use Case description overview
— Name
— ID Number
— Type
— Primary Actor
— Brief Description
— Importance Level
— Stakeholder(s)
— Trigger(s)

Sample Use Case

_#H

Make Paymenl
Arrangements

——

Lipdate Pahient
Information

- -

Produre Schedule
Infermation !

'ﬁ
Record
Availahilily

s —

o -
Make
Appomniment

g -
Make New
Palienl Appl.

Make Old
Patient Appl.

Create Mew
Pahent

Manage

schedule

Patient

Mew Patient

Old Patient

A Complete Example of a Use Case 1/3

‘ Reserve car

Customer

Use case: Reserve car

Scope: EU-Rent system

Primary Actor: Customer

Stakeholders and interests:

Customer: Wants to make a car rental reservation.

Branch manager: Wants to ensure that the reservation can be honored.
Company: Rentals requested by blacklisted customers must be refused.
Company: Wants to ensure that customers recerve the best price for their rental.
Precondition: None.

Success Guarantees: Reservation 1s saved. Reservation can be honored. Price 1s
correctly calculated.

A Complete Example of a Use Case 2/3

Trigger: The customer wants to make a rental reservation for a car.

Main Success Scenario:

1. The customer 1dentifies himself.

2. The system verifies that the customer has not been blacklisted.

3. The customer describes the rental reservation he wants to make by specifying
the rental period, the pickup branch, the drop-off branch, and the car group.

4. The system verifies that the customer 1s allowed to make the reservation.

5. The system verifies that there may be cars available in the desired car group for
the duration of the rental.

6. The system presents the price of the rental.

7. The customer accepts the rental proposal.

8. The system saves the reservation.

9. The system confirms the rental reservation to the customer.

A Complete Example of a Use Case 3/3

Extensions:
la. The customer 1s new:
lal. Create customer.
2a. The customer has been blacklisted:
2al. The system notifies customer. Use case ends.
4a. The customer 1s not allowed to make the reservation:
4al. The system notifies the customer.
4a2. The customer changes the rental period.
4a2a. The customer decides to exit:
4a2al. Use case ends.

5a. There are no cars available:
Sal. The system notifies the customer.
5a2. The customer changes the car group or the rental period.
5a2a. The customer decides to exit:
S5a2al. Use case ends.

7a. The customer refuses the proposal:
7al. The customer changes the car group or the rental period.

7ala. The customer decides to exit:
7alal. Use case ends.

7b. The customer wants to guarantee the rental:
7b1. The customer gives his credit card information.

Major Steps in Writing
Use-Cases

ldentify the major use-cases
Create the use-case diagram
Expand the major use-cases
Confirm the major use-cases
Write Use case descriptions

Use-Case Points

e Asize and effort estimation technique that
was developed around use cases
 Requires at a minimum:

— The set of essential use cases
— The use case diagram

— All actors and use cases classified as simple,
average, or complex

Unadjusted Actor Weighting Table:

Result

Actor Type Description Weighting Factor Number
Simple External System with well-defined API 1
Average External System using a protocol-based 2
interface, e.g., HTTP, TCT/IP, or a database
Complex Human 3

Unadjusted Actor Weight Total (UAW)
Unadjusted Use Case Weighting Table:

Result

Use-Case Type Description Weighting Factor Number
Simple 1-3 transactions 5
Average 4-7 transactions 10
Complex >7 transactions 15

Unadjusted Use-Case Weight Total (UUCW)

Unadjusted Use Case Points (UUCP) = UAW + UUCW

Technical Complexity Factors:

Notes

Factor Number Description Weight Assigned Value (0-5) Weighted Value
Ti Distributed system 2.0
T2 Response time or throughput 1.0
performance objectives
T3 End-user online efficiency 1.0
T4 Complex internal processing 1.0
T5 Reusability of code 1.0
T6 Easy to install 0.5
T7 Ease of use 0.5
T8 Portability 2.0
T9 Ease of change 1.0
T10 Concurrency 1.0
TT Special security objectives included 1.0
T12 Direct access for third parties 1.0
T13 Special user training required 1.0

Technical Factor Value (TFactor)

Technical Complexity Factor (TCF) = 0.6 + (0.01 * TFactar)

Environmental Factors:

Notes

Factor Number Description Weight Assigned Value (0 - 5) Weighted Value
E1 Familiarity with system 1.5
development process being used
E2 Application experience 0.5
E3 Object-oriented experience 1.0
E4 Lead analyst capability 0.5
E5 Motivation 1.0
E6 Requirements stability 2.0
E7 Part time staff -1.0
E8 Difficulty of programming language -1.0

Environmental Factor Value (EFactor)

Environmental Factor (EF) = 1.4 + (—0.03 * EFactor)
Adjusted Use Case Points (UCP) = UUCP * TCF * ECF
Effort in Person Hours = UCP * PHM

Actor & Use Case Weighting Tables

Unadjusted Actor Weighting (UAW)

Simple External System with well-defined API 1

Average External System using a protocol-based 2 2
interface, e.g., HTTP, TCT/IP, or a database

Complex Human 3

Unadjusted Use Case Weighting (UUCW)

Simple 1-3 transactions 5
Average 4-7 transactions 10
Complex More than 7 transactions 15

Unadjusted Use Case Points (UUCP) = UAW + UUCW

Technical Complexity Factors

Factor Description
Number

T1 Distributed system 2.0
T2 Response time or throughput performance objectives 1.0
T3 End-user online efficiency 1.0
T4 Complex internal processing 1.0
T5 Reusability of code 1.0
T6 Easy to install 0.5
T7 Ease of use 0.5
T8 Portability 2.0
T9 Ease of change 1.0

Technical Complexity Factor (TCF) = 0.6 + (0.01 * TFactor)

Environmental Factors

Factor Description
Number

El Familiarity with system development process in use 1.5
E2 Application experience 0.5
E3 Object-oriented experience 1.0
E4 Lead analyst capability 0.5
E5 Motivation 1.0
E6 Requirements stability 2.0
E7 Part time staff -1.0
E8 Difficulty of programming language -1.0

Environmental Factor (EF) = 1.4 + (-0.03 * EFactor)

Person-Hours Multiplier

If the sum of (humber of Efactors E1 through E6
assigned value < 3) and (number of Efactors E7
and E8 assigned value > 3) <2

PHM = 20

Else If the sum of (number of Efactors E1 through
E6 assigned value < 3) and (number of Efactors
E7 and E8 assigned value >3)=3 or 4

PHM 28
Else
Rethink project; it has too high of a risk for failure

Computing Use-Case Points

e Adjusted Use Case Points (UCP) =
UUCP * TCF * EF

e Effortin Person Hours =
UCP * PHM

Thank you!

Technical Factor

Distributed System

Multiplier

Relative
Magnitude
(Enter 0-51

Description

The architecture of the solution may be centralized or single-tenant , or it

Calculated TCF

0.6

1 . 2 may be distributed (like an n-tier solution) or multi-tenant. Higher numbers
Required represent a more complex architecture.
The quickness of response for users is an important (and non-trivial) factor.
Response Time Is For example, if the server load i1s expecied to be very low, this may be a
2 1 trivial factor. Higher numbers represent increasing importance of response
Important time (a search engine would have a high number, a daily news aggregator
would have a low number).
End User Is the application being developed to optimize on user efficiency, or just
3 . . 1 capability? Higher numbers represent projects that rely more heavily on the
Efficiency application to improve user efficiency.
Complex Internal Is there a lot of difficult algorithmic work to do and test? Complex
4 Processing 1 algorithms (resource leveling, time-domain systems analysis, OLAP cubes)
Required have higher numbers. Simple database gueries would have low numbers.
Is heavy code reuse an objective or goal? Code reuse reduces the amount
Reusable Code of effort required to deploy a project. It also reduces the amount of time
5 M tBe AE 1 required to debug a project. A shared library function can be re-used
us € ocus multiple times, and fixing the code in one place can resolve multiple bugs.
The higher the level of re-use, the lower the number.
6 I tallati E 05 Is ease of installation for end users a key factor? The higher the level of
nstaliation £ase) competence of the users, the lower the number.
- Is ease of use a primary criteria for acceptance? The greater the
7 Usability 0.5 importance of usability, the higher the number.
- Is multi-platform support required? The more platforms that have to be
a Cross-Platform 2 supported (this could be browser versions, mobile devices, etc. or
Support Windows/OSX/Unix), the higher the value.
Does the customer require the ability to change or customize the
9 Easy To Change 1 application in the future? The more change / customization that is required
in the future, the higher the value.
Will you have to address database locking and other concurrency issues?
10 Highly Concurrent 1 The more attention you have to spend to resoclving conflicts in the data or
application, the higher the value.
Can existing security solutions be leveraged, or must custom code be
11 Custom Security 1 developed? The more custom security work you have to do (field level,
page level, or role based security, for example). the higher the value.
Will the application require the use of third party controls or libraries? Like
12 Dependence On 1 re-usable code, third party code can reduce the effort required to deploy a
Third-Party Code solution. The more third party code (and the more reliable the third party
code), the lower the number.
How much user training is required? |s the application complex, or
13 User Training 1 supporting complex activities? The longer it takes users to cross the suck

threshold (achieve a level of mastery of the product), the higher the value.

Relative
Magnitude
(Enter 0-5)

Environmental Factor Description

Multiplier

Familiarity With

How much experience does your team have working in this domain? The
domain of the project will be a reflection of what the software is intended to
accomplish, not the implementation language. In other words, for an

The Project 15 insurance compensation system written in java, you care about the team’s
experience in the insurance compensation space - not how much java
they've written. Higher levels of experience get a higher number.

How much experience does your team have with the application. This will

Application 0.5 only be relevant when making changes to an existing application. Higher

Experience ' numbers represent more experience. For a new application, everyone’s
experience will be 0.

How much experience does your team have at O0O? It can be easy to forget
00 Programming ‘ that many peop!e h_ave no object qriemted programr_ning experien_ce if you
] 1 are used to having it. A user-centric or use-case-driven project will have an
Experience inherently OO structure in the implementation. Higher numbers represent
more OO0 experience.
How knowledgeable and capable is the person responsible for the
Lead Analyst 0.5 requirements? Bad requirements are the number one killer of projects - the
Capability ' Standish Group reports that 40% to 60% of defects come from bad
requirements. Higher numbers represent increased skill and knowledge.
Motivation 1 How motivated is your team? Higher numbers represent more motivation.
Changes in requirements can cause increases in work. The way to avoid
St this is by planning for change and instituting a timing system for managing
able ,) :
. 2 those changes. Most people don't do this, and some rework will be
Requ'rements unavoidable. Higher numbers represent more change (or a less effective

system for managing change).

Part Time Staff

Mote, the multiplier for this number is negative. Higher numbers reflect team
members that are part time, outside consultants, and developers who are
splitting their time across projects. Context switching and other intangible
factors make these team members less efficient.

Difficult
Programming
Language

Calculated EF

1.4

This multiplier is also negative. Harder languages represent higher
numbers. We believe that difficulty is in the eye of the be-coder (groan).
Java might be difficult for a fortran programmer. Think of it in terms of
difficulty for your team, not abstract difficulty.

